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ABSTRACT

Thunderstorms are difficult to predict because of their small length scale and fast predictability de-

struction. A cell’s predictability is constrained by properties of the flow in which it is embedded (e.g.,

vertical wind shear), and associated instabilities (e.g., convective available potential energy). To assess how

predictability of thunderstorms changes with environment, two groups of 780 idealized simulations (each

using a different microphysics scheme) were performed over a range of buoyancy and shear profiles.

Results were not sensitive to the scheme chosen. The gradient in diagnostics (updraft speed, storm speed,

etc.) across shear–buoyancy phase space represents sensitivity to small changes in initial conditions: a proxy

for inherent predictability. Storm evolution is split into two groups, separated by a U-shaped bifurcation in

phase space, comprising 1) cells that continue strengthening after 1 h versus 2) those that weaken. En-

semble forecasts in regimes near this bifurcation are hence expected to have larger uncertainty, and ad-

equate dispersion and reliability is essential. Predictability loss takes two forms: (i) chaotic error growth

from the largest andmost powerful storms, and (ii) tipping points at the U-shaped perimeter of the stronger

storms. The former is associated with traditional forecast error between corresponding grid points, and is

here counterintuitive; the latter is associated with object-based error, and matches the mental filtering

performed by human forecasters for the convective scale.

1. Introduction

The skill of a numerical weather prediction (NWP)

forecast is dependent on the flow regime (e.g., Palmer

1988), all else being equal. In chaotic flow, even the

smallest change in initial conditions (ICs) can grow

quasi exponentially, and ultimately yields a horizon

of predictability relative to the scale of motion (Lorenz

1969; Palmer et al. 2014). Locally, predictability is

destroyed quickly by moist convection (Zhang et al.

2002), potentially through the mechanism of tipping

points (e.g., parcels reaching the level of free convec-

tion) that accentuate sensitivity to ICs (the so-called

butterfly effect; Lorenz 1995). Furthermore, as limited-

area-model forecasts are run at a higher resolution, the

ratio of the vertical depth to the horizontal grid spacing

of the model becomes larger: the elliptical dimension

increases (Schertzer and Lovejoy 1985). In this circum-

stance, error growth is not confined to a quasi-2D field,

and has a relative greater degree of freedom in the

vertical. As such, the greater the elliptical dimension,

the more detrimental small errors in time and space

become to the forecast (Tennekes 1978).

Nonlinear dynamical systems across many disciplines

may demonstrate extreme sensitivity to ICs, giving rise

to tipping points (e.g., Gleick 1987; Coffer and Parker

2018). For example, consider an air parcel almost at

its level of free convection. At this tipping point, an

infinitesimal change in ICs of the parcel’s potential

temperature or specific humidity is enough to nudge

the atmosphere from one regime (no thunderstorm)

to another (thunderstorm). Thunderstorm development

then triggers phenomena such as gravity waves (Curry

and Murty 1974), surface pressure changes (Markowski

and Richardson 2010, 218–220), and upscale growth

through cell mergers (e.g., Burke and Schultz 2004). The

‘‘no thunderstorm–thunderstorm’’ bifurcation results in a

binary choice of solutions, or basins of attraction sepa-

rated by a sharp divide. This is analogous to standing on a
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mountain peak along theContinentalDivide of theNorth

AmericanRockies and pouring water on one side. A small

change in position will mean the water will end up in a

different ocean. We can likewise conceptualize thunder-

storm development in a ‘‘landscape’’ where basins of

attraction (like watersheds; Grebogi et al. 1987; Nusse and

Yorke 1996) are the thunderstorm’smode, intensity, or any

characteristic; this approach is demonstrated herein.

The application of theoretical predictability to oper-

ational NWP has yielded great insight into potential

forecast-skill limits: for example, those associated with

low-frequency variability (Palmer 1988), extratropical cy-

clones (Zhang et al. 2002; McMurdie and Ancell 2014),

mesoscale convective systems (Wandishin et al. 2008,

2010; Rodwell et al. 2013; Durran and Weyn 2016; Lillo

and Parsons 2017), supercells (Cintineo and Stensrud

2013; Flora et al. 2018), tornadogenesis (Zhang et al. 2016;

Coffer et al. 2017), cloud-resolving models (Hohenegger

et al. 2006), and so on. An estimate of maximum skill

for a given phenomenon or regime, while impossible to

diagnose precisely, can normalize probabilistic estimates

for forecasters. A large ensemble spread in a less predict-

able regime may not be poor performance from the mod-

eling system itself, but a fair reflection of the uncertainty

given observational error. In fact, if forecasters and re-

searchers can identify the most unpredictable scenarios,

where themost value is gained from small improvements in

IC estimates (e.g., in situ observations, satellites, radar as-

similation), targeted observations (e.g., Ancell and Hakim

2007), or stochastic perturbations (e.g., Buizza et al. 1999),

forecasts could be substantially improved if the model is

nudged into the correct ‘‘watershed’’ through adjustment

of the forecast’s trajectory through phase space (as in

Leroy and Rodwell 2014; Berner et al. 2017). Of course,

the correct watershed is not known a priori, but a suffi-

cient sampling of phase space by the ensemblemembers is

defined by this exploration of potential basins of attraction.

Hence, the variation of this theoretical predictability

is sensitive to the large-scale environment. Small scales

may or may not inherit extended predictability from

larger scales (Durran and Weyn 2016), but large-scale

flow does constrain the convective evolution of a thun-

derstorm (Weisman and Klemp 1982, hereafter WK82).

In WK82, the authors tested the sensitivity of thunder-

storm evolution to one definition of buoyancy (related

to surface mixing ratio qy0 through a prescribed vertical

profile)1 and vertical wind shear U (hereby ‘‘shear’’) in

idealized numerical simulations. Their results revealed

a ‘‘Goldilocks zone’’ for maximizing rotation and ver-

tical motion; the nature and strength of the simulated

cells changed through different regions of buoyancy–shear

phase space. The WK82 methodology was later extended

to investigate sensitivity to hodograph shape (Weisman

and Klemp 1984; McCaul and Weisman 2001) and the

depth of the moist layer (McCaul and Cohen 2002), while

Kirkpatrick et al. (2011) measured multiple novel storm

characteristics as a function of buoyancy–shear phase

space. Furthermore, Potvin and Flora (2015) ran idealized

supercell simulations using observed atmospheric profiles

from three high-profile tornadic supercell cases, and

measured sensitivity to horizontal grid spacing.

The increase in computer power sinceWK82 now allows

greater granularity with which to test sensitivity of thun-

derstorm evolution to buoyancy and shear. Herein, the

methodology of WK82 is extended to construct a ‘‘land-

scape’’ of attraction basins as a function of atmospheric-

profile ICs (outlined in section 2). In section 3, various

storm diagnostics are analyzed for their variation in

buoyancy–shear (phase) space, and the implications on

predictability are synthesized and summarized in sec-

tions 4 and 5, respectively.

2. Methodology

a. Numerical model configuration

All simulations were performed with the Weather Re-

search and Forecasting (WRF)Model (Powers et al. 2017),

version 3.7, in idealized mode (em_quarter_ss). However,

all vertical profiles herein imply a straight hodograph (i.e.,

Fig. 1), rather than one that is curved (as in the eponymous,

default quarter-circle hodograph). Two matrices of runs

were generated: one using the NSSL two-moment micro-

physics (Mansell et al. 2010), and the other with Morrison

twomoment (Morrison et al. 2009), to test for sensitivity of

the results to microphysical scheme. In the absence of a

cumulus parameterization, error from the microphysics

parameterization is expected to dominate other param-

eterized processes (Jankov et al. 2005). Two two-moment

schemes were chosen because of their increased realism

over single-moment schemes (Igel et al. 2015). All other

model options were left as default. Herein, we use an

otherwise-identical model setup for each microphysics

scheme to primarily detect sensitivity to ICs, rather than

model error, as is the scope of the present study. However,

this is not to diminish the importance of model uncertainty

on thunderstorm forecasts (Stensrud et al. 2000;Lawsonand

Gallus 2016a), or errors stemming from truncation (Berner

et al. 2012), numerical diffusion (Knievel et al. 2007), etc.

Idealized WRF runs were fed with a sounding repre-

sentative of warm-season vertical profiles, in proximity to

1 This definition of buoyancy, as discussed in Markowski and

Richardson (2010, 20–21) and used here and in WK82, uses a

representative surface parcel while ignoring the impact of hydro-

meteors, pressure perturbations, and water vapor.
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supercellular development in the continentalUnited States,

and associated hazardous weather (WK82). Figure 1 dis-

plays how initial surface water vapor mixing ratio qy0 was

varied between 10.0 and 16.0gkg21, while vertical wind

shear U was varied according to Eq. (4) in WK82:

U5U
s
tanh

�z
3

�
, (1)

whereUs is a factor varied between 0 and 50m s21, and

is approximately equal to the initial 0–6-km vertical

wind shear. The resulting wind profile traces a straight-

line hodograph (not shown). Environmental potential

temperature u is varied with height z as in WK82:
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where cp 5 1004 JK21 kg21 is the specific heat of dry air

at constant pressure, g5 9.81m s22 is acceleration under

gravity, u0 is the surface potential temperature (set to

300K), and the subscript ‘‘tr’’ denotes constants at

the tropopause: height ztr 5 12km, potential temperature

utr 5 343K, and dry-bulb temperature Ttr 5 213K.

Environmental relative humidity RH is then varied as in

WK82:
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with the exception of an imposed well-mixed boundary

layer, constrained by the constant qy0 for each simula-

tion. Given the fixed vertical temperature profile, there

is a simple relationship between qy0 and convective

available potential energy (CAPE), and hence we use the

two interchangeably to indicate latent instability (Schultz

and Schumacher 1999). Herein, CAPE will refer to

lowest-100-hPa mixed-layer CAPE (calculation from

Blumberg et al. 2017), and the conversion between CAPE

and qy0 is shown on the coupled y axes for relevant heat

maps below. The author will refer to buoyancy, qy0, and

CAPE interchangeably, where appropriate, within the

framework of the present study. Likewise, the following

text refers to U, Us, and vertical wind shear (or simply

shear) interchangeably, where appropriate. This is not

to say these interchangeable terms are equivalent, but

rather, they are strongly correlated quantities and the

results likely apply similarly to the various measures of

FIG. 1. Skew T–logp graph showing atmospheric profiles of humidity, temperature, and wind

speed and how these variables change across phase space.
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buoyancy and vertical wind shear. The author’s definitions

of low, mid-, high, and extreme regimes of CAPE, qy0,

and Us are shown in Table 1, and were informed by a cli-

matology of severe weather environments in the United

States (Grams et al. 2012). Herein, we define severe near-

surface wind as exceeding 25.7ms21 (50kt or 58mph),

in concurrence with the Storm Prediction Center (SPC)

definitions found online (https://www.spc.noaa.gov/misc/

about.html; accessed 1 January 2019). (Hail and torna-

does are not explicitly addressed herein.)

Each idealized simulation was run for 2h, though

50 runs (6%; mainly in the extreme-qy0 regime) devel-

oped numerical instability in vertical motion while using

the Morrison microphysics scheme and crashed early

(cf. 51 runs for the NSSL two-moment scheme). These

runs are represented by a black square in the following

heat-map figures, denoting either missing data or non-

sensical values.While these simulations could have been

rerun with a smaller time step, this would have required

doing so for the entire dataset for consistency. The small

fraction of runs that end prematurely is unlikely to affect

the general conclusions herein.

The present phase-space exploration differs from

WK82 primarily by increasing the granularity within

buoyancy–shear space. WK82 used data from 60 simu-

lations with 1.0 g kg21 steps in buoyancy and 5m s21

steps in shear. Their simulations used 2-km horizontal

grid spacing using the Klemp–Wilhelmson model with

Chen modifications, and one microphysics parameteri-

zation (a Kessler-like warm-rain scheme). In contrast,

780 runs per microphysics scheme were performed

herein, with two schemes; environmental profiles were

varied in steps of 0.2 g kg21 in qy0 (effectively ;100–

150 J kg21 in CAPE) and 2m s21 in Us. Horizontal grid

spacing of 3 kmwas chosen tomimic current operational

convection-allowing models (e.g., Wheatley et al. 2015),

and to strike the balance between a large dataset (con-

sidering memory and computational constraints) and

sufficiently fine spacing to resolve the fundamental

nature of the supercells (Potvin and Flora 2015). Fifty

vertical levels between 1000 and 100 hPa were used,

;400m apart, to mimic typical operational standards.

Otherwise, the configuration was kept constant between

runs, including no Coriolis effect, Rayleigh damping 5km

from the top of the model (option 2 in the WRF namelist

configuration), and a free-slip surface (i.e., surface physics

were turned off). A mean easterly flow of 5ms21 was

imparted on the initial sounding, such that when com-

bined with a domain size of 120 by 151 grid points (i.e.,

360km by 453km), no cells exited the open boundaries

during the simulations. The long axis of this rectangular

domain is oriented along the expected axis of storm

movement (i.e., from left to right as viewed from above).

The initiation of convection within the idealized WRF

runs was via a warm bubble of maximum perturbation

temperature equal to 3K, with a 10-km horizontal radius

and 1.5-km vertical radius. This perturbation was then

applied to the potential-temperature IC field one-quarter

along the x axis and one-half along the y axis (i.e., center

left if viewed from above).

b. Predictability and uncertainty

At this point, we differentiate between two concepts of

predictability; however, the sense of predictability is not

always explicitly stated in the following sections when the

implication applies to both senses. First, a point-by-point

numerical verification assesses traditional or gridpoint

predictability, the form primarily discussed by Lorenz

(1963). In this framework, predictability is lost at a given

point in time when the error between a pair of similar

forecasts approaches the climatological error: the so-called

predictability horizon (Palmer et al. 2014). Forecast eval-

uation metrics typically used on the synoptic scale, such

as root-mean-square error, verify smooth fields with no

explicit tolerance for temporal and spatial phase errors.

However, such traditional scores may grossly underesti-

mate the predictability horizon for events on smaller scales

(e.g., Reinecke and Durran 2009), as error saturation

is reached quickly, and phase errors of objects (e.g.,

thunderstorms) grow larger as a fraction of the object’s

size. The implication of gridpoint error saturation is that

all useful prognostic information has been extracted as

the horizon is reached, when in fact useful information is

still available to the forecaster (contingent on relevant

filtering and/or statistical processing, either explicitly,

or implicitly performed as part of the forecast process).

In response, recent verification scores and schemes have

been developed that include tolerance for temporal and/or

spatial phase errors (such as the fractions skill score;

Roberts and Lean 2008), or that reduce a heterogeneous

field to objects, such as the structure–amplitude–location

method (Wernli et al. 2008) or the methodology recently

applied in Skinner et al. (2018). These schemes avoid a

double penalty in time and space for fields associated

with discrete phenomena (Gilleland et al. 2009, 2010),

and address a predictability that has been extended

TABLE 1. Definitions of low, middle, high, and extreme levels

of CAPE, qy0, and Us used in the manuscript. The qy0 ranges are

estimated from the CAPE– qy0 relationship (see y axes of Fig. 4,

etc.). Informed by U.S. climatology for severe and tornadic

weather events in Grams et al. (2012, their Figs. 14a, 15a, 16a, 17a).

Variable Low Middle High Extreme

Us (m s21) 0–15 15–25 25–35 351
CAPE (J kg21) 0–500 500–1500 1500–2500 25001
qy0 (g kg

21) 0–10.5 10.4–12.8 12.8–14.8 14.81
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through filtering (as reviewed in Williams 1997). This is

referred to herein as object-based predictability.

High predictability (i.e., a longer predictability hori-

zon) is associated with low uncertainty, and vice versa.

Uncertainty maxima in buoyancy–shear space highlight

regions with increased sensitivity to small changes in ICs

(lower predictability); however, given such pessimistic

estimates of predictability occur in the absence of error

tolerance, the conceptual results are dependent on

whether gridpoint or object-based predictability is being

measured. To measure traditional predictability, the

variation between a number of adjacent cells (Fig. 2) at a

given time step is measured by difference kinetic energy

(DKE; e.g., Zhang et al. 2002), computed as follows:

DKE5 0:5�U
02
ijk 1V

02
ijk , (4)

where U 0 and V 0 are the differences in x- and y-direction

winds, respectively, computed at all grid points (i, j, k).

This computes the difference at every grid point between

every permutation pair within a given group of adjacent

simulations; herein, we compute DKE over 3 3 3 win-

dows. In the following, DKE represents an integrated loss

of predictability: the larger the value, the closer to error

saturation. A unit–time derivative, hereby termed dDKE,

can be considered proportional to the rate of predictability

destruction, and is shown in the following to assess regions

of phase space that are deemed less predictable in the

gridpoint sense. DKE was not computed for central cells

that lay on the perimeter of phase space (i.e., at aminimum

or maximum value of Us and qy0), as the 3 3 3 window

partly lies outside of phase space. These edge pixels are

represented by black pixels in the heat map.

To complement this energy-based approach, object-

based predictability is measured by computing the stan-

dard deviation of structure–amplitude–location (SAL)

components (Wernli et al. 2008), which has been adapted

for radar reflectivity (Lawson and Gallus 2016b). In short,

SAL identifies objects in two fields; the two fields are often

simulation-versus-observation comparisons, but herein

we analyze adjacent idealized simulations only. The SAL

method decomposes differences between these fields into

three components, first bymasking below a given threshold

(here, 5dBZ), and only identifying objects that surpass a

pixel threshold (here, five pixels, which is approximately

the minimum effective resolution). Results for real-world

verification are sensitive to choice of threshold and foot-

print (Lawson and Gallus 2016b). However, in the present

paper, the knowledge that a maximum of one storm can be

generated reducesmuchof the spurious signal (Wernli et al.

2008), and preliminary results were not substantially af-

fected by the choice of settings. The SAL components are

d structure S (between 22 and 12), which considers the

object size and peakedness/flatness, such that a positive

S value for a given simulationmay indicate a flatter (i.e.,

more stratiform) character of composite reflectivity

compared to the control;
d amplitude A (between 22 and 12), which measures

a normalized domainwide accumulation, such that a

positiveA value indicates a positive reflectivity bias; and

FIG. 2. Schematic diagram outlining the heat map and uncertainty figures in the present

paper for a given microphysics parameterization scheme. This methodology is repeated for

each nine-pixel window in the phase-space matrix. Before plotting, the s-uncertainty field is

smoothed, or SAL-component standard deviation is computed, as discussed in text.
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d location L (between 0 and 12), a sum of Euclidean

differences between 1) object centers of mass, weighted

by their integrated quantity, and 2) domainwide center

of mass. Hence, a larger L component represents a

larger distance error between in identified objects. No

object matching is required, in contrast to the method-

ology of Skinner et al. (2018) and others.

SAL is deployed herein to evaluate reflectivity at 1 km

above ground level (AGL) between a given simulation

and the eightmost similar initial-profile simulations (i.e.,

the eight cells surrounding the given location in the

matrix of phase space). As with DKE, the runs around

the perimeter of phase space are neglected, as a full

nine-pixel computation cannot be performed, and are

represented by black pixels in the heat map. After SAL

is computed (Fig. 2), the standard deviation of each SAL

component’s phase space is applied (over the same 3 3
3 windows, with no smoothing). In contrast to other fig-

ures of uncertainty, we show this standard deviation as

the diagnostic variable (i.e., the pixel colors), to highlight

potential tipping points in phase space. The standard de-

viation of SAL is used (rather than mean values) to high-

light the variation of component differences between a

given cell (a control) and its neighbors in phase space.

Use of the mean would smooth out cancelling negative

and positive errors, andmistakenly emphasize regions of

consistently high (but similar types of) error.

The uncertainty of other diagnostic fields, shown in

heat-map figures herein, is computed with a moving 3 3
3–window standard deviation operation. This standard

deviation field is then passed through a two-sigma Gauss-

ian smoother to remove small variations (i.e., noise) on the

order of differences between experiments with different

microphysics schemes. The resulting field is hereby termed

s uncertainty, where a subscript will indicate the field in

question (e.g., srain for rainfall diagnostics), and is con-

toured with black lines in the following heat-map figures.

The larger the s uncertainty, the larger the sensitivity

of the thunderstorm to small changes in ICs, and hence

the shorter the theoretical predictability horizon. Later

sections will discuss whether the regions of large s

uncertainty correspond to gridpoint or object-based

predictability.

c. Other diagnostics

As the simulations herein are run at 3-km horizontal

grid spacing, little can be said explicitly regarding

tornadogenesis and its predictability. However, updraft

helicity (UH; Kain et al. 2008) represents a proxy for

mesocyclonic rotation near the surface (0–2km), which

in turn provides a potential detection of tornadogenesis

(Trapp et al. 2005). A weaker relationship exists between

tornadogenesis and mesocyclone detection at midlevels (2–

5km), and UH computed within this layer is also included

here for comparison with low-level UH. Because of the

volume of computations, UH is computed by 1) identifying

the nearest model levels to the relevant heights AGL and

2) integrating between those levels (inclusive) as such:

UH5 �
l5X

l5x

Dzjw , (5)

where l is the model level, x and X are the lower- and

upper-level values respectively, j and w are the vertical

relative vorticity and verticalmotion averaged for the layer,

respectively, and Dz is the difference in meters between

each model level. Herein, we use the lowest model level

l5 0 (approximately 200m AGL), l5 6 (approximately

2km), and l5 13 (approximately 5km). Hence, UH02 is

approximately the 0–2-km UH using x5 0 and X5 6,

while UH25 is the 2–5-km UH using x5 6 and X5 13.

Storm speed is estimated for a given time by first

identifying the 500-hPa updraft maximum 10min before

and after the given time. A storm is deemed present if

the location of this updraft corresponds to simulated

composite reflectivity greater than 25dBZ. If no storm is

detected, this cell is ignored (and represented by a black

pixel in heat maps); otherwise, the distance traveled

is computed via the Pythagorean relationship, and

converted to meters per second.

To estimate storm size within the simulation for a

given time, the number of pixels Nc containing RH

greater than 99.9% at l 5 6 (;2 km AGL, or 700 hPa)

was converted to equivalent storm diameter ds:

d
s
5 23 33 23

ffiffiffiffiffiffi
N

c

p

r
, (6)

where the first three integer factors account for the half

domain, horizontal grid spacing (in km), and conversion

from radius to diameter, respectively. Because of the

eccentricity of storm objects, the estimated equivalent

radius will be smaller than if measured by, for example, a

convex hull operation, and this underestimation is likely

worse for higher shear values (because of deformation).

However, this is unlikely to affect the general conclu-

sions: preliminary work showed similar patterns when

total pixel fraction of the half domain was used, or when

the RH threshold was lowered.

Finally, as inWK82, storm strength Sw
2 at a given time

is defined as the ratio of simulated maximum updraft

2 Storm strength is represented by S in WK82, but named Sw

herein to avoid confusion with SAL components.
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speed Wmax to the maximum that could be achieved

through moist adiabatic ascent (assuming parcel-theory

concepts as in WK82):

S
w
5

W
maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2CAPE
p . (7)

3. Results: Diagnostic heat maps

In the following sections, heat maps are presented in

the manner outlined schematically in Fig. 2, with the

s uncertainty of each field contoured in black (other

than Figs. 12 and 15). As each simulation domain is

symmetrical along the y-axis center, only one-half of

the domain data were considered during statistical

processing to reduce the computational expense, as in

WK82. The differences in diagnostics stemming from

using Morrison or NSSL two-moment microphysics

scheme were close to universally negligible. Almost all

simulation differences were within 5% of the pair’s

mean; for example, differences in 60-min Sw are pre-

sented in Fig. 3. In this example, the small number

(,10) of outliers do not noticeably change the nature

of each scheme’s heat map. This pattern is common

with all other diagnostic fields that appear herein. After

checking difference covariance matrices and compar-

ing each microphysics’ diagnostic-value distributions

(not shown), the author is confident that results solely

from the Morrison scheme can be presented and in-

terpreted without loss of applicability to the NSSL

two-moment scheme (or in general). This is further ad-

dressed with the slight smoothing of the s-uncertainty

fields, as discussed in section 2.

a. Wind and rotation fields

The qy0–Us phase space for maximum near-surface

(;200m AGL; Fig. 4) wind suggests that wind speeds

potentially dangerous to aircraft, structures, etc.

(.25ms21; Fujita 1990) occur in high to extreme values

of CAPE, as found by Grams et al. (2012). Further,

within this subregion of phase space, there are pockets

of subsevere near-surface wind associated with Us ; 8

and;22–30ms21. This intermittency across phase space

is likely the fingerprint of chaos: nonlinear, abrupt

changes in sensible weather from small, linear increases

in shear. Two local maxima exist in the uncertainty field

swind, both near the maxima in near-surface wind mag-

nitude (Fig. 4): one at low to midshear, high buoyancy;

another at extreme shear, midbuoyancy. In between,

there is a col across a wide region of mid- to high buoy-

ancy and shear in phase space. Again, this highlights

the variability in predictability across qy0–Us phase space.

When we inspect the diagnostics for maximum up-

draft (Fig. 5a) and downdraft (Fig. 5b) speeds, we see a

U-shaped lobe of higher (.15ms21) updraft speed at

larger qy0 and Us values. In updraft data (Fig. 5a), the

two s-uncertainty maxima at 1) low- to midshear, low-

to midbuoyancy, and 2) extreme-shear, low-buoyancy

regimes are shifted toward lower-buoyancy phase space,

when contrasted with swind. These locations change again

FIG. 3. Differences in 60-min storm strength (also shown in Fig. 11b) between the two microphysics schemes in (a) absolute and

(b) relative terms of the interscheme mean for that cell. Black pixels in (a) mark simulations that crashed early in either microphysics

scheme. The y axis in (b) indicates histogram-bin count (percentage categories as labeled on the x axis).
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for downdrafts (Fig. 5b), with s uncertainty located to-

ward higher buoyancy values. Strong downdrafts are also

nearly coincident with some local minima in surface wind

maxima, discussed in the previous paragraph (cf. Figs. 4

and 5b at the Us 5 8 and 24m s21 columns and at high

buoyancy values).

Next shown in Fig. 6 are heat maps of low- and

midlevel vertical relative vorticity (at;925 and 500hPa,

respectively), hereby termed j925 and j500. We again

see a U-shaped lobe as in previous heat maps; this is

similar to the analogous figure inWK82 (their Fig. 11), as

expected from the similarities in experiment configura-

tion. In contrast to near-surface wind and vertical motion

diagnostics, we find very little j925 and j500 in low-shear

environments, confirming the textbook importance that

vertical wind shear plays in mesocyclone development

(Markowski and Richardson 2010, 201–244). Indeed,

at high to extreme levels of shear and buoyancy, high

j925 (.43 1023 s21) is associated with these supercellular

storms (Fig. 6a). This regime, seemingly ripe for

mesocyclonic development, concurs with observational

studies of tornado occurrence (Brooks et al. 2003, their

Fig. 1). At midlevels (Fig. 6b), the pattern of j500 is

similar to that in j925, but with the phase-space maxi-

mum shifted toward lower (but still high) values of Us.

The s-uncertainty field follows a similar pattern in j925
(Fig. 6a) comparedwith j500: two prominentsj maxima in

1) low- tomidshear, high-buoyancy and 2) extreme-shear,

low-buoyancy regimes; these maxima are both displaced

toward higher buoyancy levels at 500hPa (Fig. 6b).

The maximum in updraft helicity across phase space,

as a product of vertical motion and rotation, is likely to

occur near the intersection of maxima in Figs. 5 and 6,

where the author assumes that strong updrafts collocate

with the mesocyclone. This relationship is found in

Fig. 7b, where the largest UH02 values partly overlap with

the largest in j925. Accordingly, UH25 is more confined to

extreme values of both qy0 and Us (Fig. 7a). In both low-

and midlevel layers, the uncertainty sUH is largest 1) on

the perimeter ofmaximumUH02 andUH25 values in high

to extreme shear and high to extreme buoyancy, and

2) in a zone of near-midshear values and near-extreme-

buoyancy values. As UH02 is frequently used as a signal

for tornadogenesis in quasi-operational ensemble fore-

cast systems (e.g., Wheatley et al. 2015; Skinner et al.

2018), these results emphasize how low predictability

necessitates adequate ensemble dispersion and reliability,

especially in contexts where deterministic thinking is

historically preferred (Novak et al. 2008).

b. Precipitation

Figure 8 presents three precipitation-related products:

First (Fig. 8a), cubic rainfall accumulation integrated

over the entire half domain is presented. As no simu-

lated storm exits their domain boundaries within the 2 h,

this product can be interpreted as total precipitation

from the thunderstorm in this time. As such, it is un-

surprising that Fig. 8a displays a similar U-shaped pat-

tern in both rainfall and contours of uncertainty srain

seen in the previous storm-related diagnostic heat maps.

The broad midshear, high-buoyancy regime is associ-

ated with a local minimum in srain, implying these sub-

stantial storm rainfall totals are relatively predictable in

contrast with nearby states in phase space. However,

when we consider maximum 2-h accumulated rainfall at

any point (Fig. 8b), the pattern changes: there is a

bullseye in both magnitude and srain at low shear and

high to extreme buoyancy. These high pointwise rainfall

accumulations are observed here in tandem with high

rainfall rate, slow storm speed, and extended storm life3

FIG. 4. Heatmap in qy0–Us phase space, where each colored pixel

represents the maximum lowest-level wind speed at any point or

time for that given simulation, for the Morrison microphysics

scheme. The darker the color, the stronger the wind, as denoted by

the legend (m s21). Note the color scheme is normalized for each

time’s extrema to accentuate areas of largest uncertainty per time.

Black lines contour s uncertainty, which measures sensitivity to

small changes in the initial environmental profile, and is contoured

every 0.2m s21. Local maxima and minima in s uncertainty are

denoted by X and N symbols, respectively.

3 Storm lifetime is not shown explicitly but can be inferred in

many plots by the presence of a nonzero diagnostic value.
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(among other factors; Doswell et al. 1996), evidenced in

the following heatmaps. There is a weakersrain maximum

in midbuoyancy, extreme-shear environments (Fig. 8b),

approximated collocated with the s-uncertainty maxi-

mum seen in some previous heat maps (cf. Fig. 4a).

Last, maximum 2.5-min rainfall accumulation at any

point and time—aproxy here for the storm’s instantaneous

rainfall rate—shows in Fig. 8c that a far broader area of

phase space supports heavy rainfall rates .2mm per

time step (every 2.5min; or as an hourly rate, 48mmh21

or 1.89 in. h21). The heaviest rates are in low- to mid-

shear and high- to extreme-buoyancy environments,

corresponding to the aforementioned pointwise accu-

mulation maximum. This area of phase space is also

FIG. 5. As in Fig. 4, but for (a) maximum updraft and (b) maximum downdraft (m s21) at any level, point, or time.

The s-uncertainty field is contoured every 0.4m s21 in (a) and 0.05m s21 in (b).

FIG. 6. As in Fig. 4, but for maximum relative vertical vorticity (31023 s21) at (a) ;925 and (b) ;500 hPa for any

point or time. The s-uncertainty field is contoured every 0.05 3 1023 s21 in (a) and 0.025 3 1023 s21 in (b).
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associated with a maximum in srain, which supports

the relationship that rare or extreme weather events

are also the most unpredictable (Sterk et al. 2016).

Finally, the low-shear, low-buoyancy environments

for all three rainfall products (Fig. 8) support sub-

stantially smaller rainfall accumulations and rates.

The following discussion details further storm prop-

erties that reveal a bifurcation in phase space: be-

tween storms that begin to dissipate at 30–60min, and

those that continue to strengthen over the 2 h.

c. Storm speed, size, strength

Figure 9 presents the speed of detected convective cells

at 30, 60, and 90min of simulation time. The detection

methodology is discussed in section 2, and instances

where a stormwas not detected are represented by a black

pixel in Fig. 9. After 30min (Fig. 9a), only low to midshear

and high to extreme CAPE supports detectable cell de-

velopment. This echoesWK82 (their Fig. 3), where storms

decrease in updraft strength as Us increases, at 30min of

FIG. 7. As in Fig. 4, but for maximum updraft helicity (m2 s22) for any point or time in the (a) 2–5- and (b) 0–2-km

layers. The s-uncertainty field is contoured every 1m2 s22 in (a) and 0.1 3 1023m2 s22 in (b).

FIG. 8. As in Fig. 4, but for (a) rainfall integrated over the entire half domain (103m3), (b) maximum 2-h accumulated rainfall at any

point (mm), and (c) maximum 2.5-min accumulation for any point and time (mm). The s-uncertainty field is contoured every 403 103m3

in (a), 0.2mm in (b), and 0.05mm in (c).
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simulation. Uncertainty of storm speed is highest in the

center of this regime, as marked by the local maximum in

uncertainty sspeed, and speeds increase from almost sta-

tionary to over 10ms
21 (19.4kt) as shear increases. The

computed storm speed is tightly related to Us, as in

observed systems (Bunkers et al. 2000). After 60min

(Fig. 9b), storms are detected inmost regimes. Storm speed

increases fairly linearly withUs, though the highestsspeed is

found in low to midbuoyancy at extreme Us values, asso-

ciated with the highest speeds (.30ms21, or 58.3kt). This

is similar to Kirkpatrick et al. (2007), where thunderstorms

developingwithin this area of phase spacemoved at speeds

approaching the environmental 0–6-km bulk vertical wind

shear, unlike relatively slower cells in regimes possessing

high shear and buoyancy. By 90min (Fig. 9c), the pattern is

similar to 30min earlier (in Fig. 9b), though 1) there is a

much stronger gradient between fast (25ms21) and faster

(35ms21) cells at extreme-shear values and low buoyancy

and 2)sspeed has increased in the high-buoyancy, low-shear

regime. This second point suggests that location errors

FIG. 9. As in Fig. 4, but for thunderstorm speed (m s21) at (a) 30, (b) 60, and (c) 90min. The s-uncertainty field is contoured every 0.2m s21

in (a), 0.3m s21 in (b), and 0.5m s21 in (c). Thunderstorms were detected if the location of the maximum 500-hPa updraft at a given time

corresponded to simulated composite reflectivity greater than 25 dBZ; runs with no detected storms are represented here with black pixels.

FIG. 10. As in Fig. 4, but for equivalent thunderstorm diameter (km) at (a) 60 and (b) 120min. The s-uncertainty

field is here contoured every 0.4 km in (a) and 0.8 km in (b).
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may become especially prominent in the latter stages of

very short-term (0–6 h) hazardous weather forecasts

in operations-ready ensemble systems (Yussouf et al.

2016; Lawson et al. 2018).

Equivalent storm diameter is shown in Fig. 10 (the

formulation is discussed in section 2). This heat map

shows much uncertainty in storm size at 1 h (Fig. 10a),

with storms detected4 at almost all regimes away from

the lowest qy0 andUs values. The considerable variation

between adjacent pixels likely stems from phase errors

in storm growth (not shown). As time progresses (at 2 h;

Fig. 10b), larger thunderstorms are more confined

to higher qy0 and Us values bounded by the U-shaped

perimeter. There is a local minimum of s uncertainty

in midshear, midbuoyancy environments, suggesting

storms in this regime grow in size fairly similarly, re-

gardless of small IC error. The sharpest gradient of

storm size (maximum ssize) occurs on the low-shear side

of the U-shaped perimeter, which is near the afore-

mentioned zones of high magnitude and uncertainty in

rainfall and storm-speed products (cf. Figs. 8–10).

To summarize numerous diagnostic concepts in one

product, storm strength Sw is computed as in WK82

[repeated here in Eq. (7)], and results for three lead

times are presented in Fig. 11. As Sw is normalized by the

square of twice CAPE, a value of unity represents a

storm that is as strong as the profile of moist ascent can

support (from the tenets of parcel theory); the smaller

the fraction, the weaker the storm, but normalized by its

location in phase space. After 30min (Fig. 11a), we find

that lower-shear regimes support much quicker storm

evolution. Taken as a snapshot in time, note the large

variation in adjacent pixels for all low to high values

of Us. This may be associated with the lower skill mea-

sured in operational forecasts within the same regime

(Herman et al. 2018). At 60min (Fig. 11b), there has

been a considerable collapse in Sw values in the low-

shear, low-buoyancy regime: for instance, Sw ratios fall

from 0.5 to 0.65 to below 0.3 in the 30min between

Figs. 11a and 11b.We see a familiar U-shaped perimeter

dividing storms that become stronger as time progresses

(to the high-shear, high-buoyancy side of phase space)

and those that dissipate over the 30–60-min time period

(in the low-shear, low-buoyancy regime; white or light

pixels in Fig. 11b). By 90min (Fig. 11c), there is a sharp

divide between the two basins: this U-shaped perimeter

can be interpreted as a tipping point. While the largest

variation in storm strength sSw is found in the low-shear,

high-buoyancy regime (cf. previous discussion on pre-

cipitation), the sSw maximum extends around the

perimeter into the high-shear, low-CAPE regime (e.g.,

Sherburn and Parker 2014; Mulder and Schultz 2015;

Sherburn et al. 2016). This corroborates Herman et al.

(2018), who found forecasts within the high-shear, low-

buoyancy regime were poor. These results confirm that

the sensitivity is acute when moving from this regime to a

slightly more unstable profile: a matter of O(100) J kg21

discriminates between strengthening and dissipating

cells. A similarly high sensitivity of storm evolution to

small errors was also reported by Crook (1996) and

Elmore et al. (2002), who found that critical differ-

ences in initial-condition and representivity errors

were on the order of observation errors. This bifurcation

FIG. 11. As in Fig. 4, but for storm strength (unitless) at (a) 30, (b) 60, and (c) 90min. The s-uncertainty field is here contoured every 0.005

in (a), 0.008 in (b), and 0.015 in (c).

4 Profiles with an equivalent diameter less than;9 km are below

the effective resolution of the simulation, and caution must be

taken when interpreting this diagnostic as a result.
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(solutions splitting into separate watersheds) in 90-min

storm strength will be shown further through time series

of updraft strength in the next section.

The discrepancy between profiles with no storm de-

tected in Fig. 9 and those with nonzero storm attributes

(e.g., low-buoyancy, low-shear regimes in Figs. 11a,b) is

caused by the reflectivity threshold in the storm-detection

methodology, during storm-speed estimation. At the

lowest Us and qy0 values, updrafts still occur, but storms

are either poorly resolved at 3-km grid spacing, or are so

weak that they do not pass the threshold. It is unlikely

that cellular convection in the bottom left of each heat

map would be considered a thunderstorm at any point in

the simulation (no lightning parameterization is used).

When animated for every output time (not shown), the

high variability in low-shear regimes is represented by

local maximum–minimum couplets of Sw rippling through

phase space. While caution must be taken when inter-

preting results at this horizontal grid spacing, thismay be a

signal of a pulsating or cyclical behavior, also seen in time

series of vertical motion (presented in the next section).

4. Predictability synthesis

Contours of s uncertainty have been shown in the

previous section to highlight potential tipping points in

phase space. We now turn to two mathematical quanti-

ties to determine regions of phase space with low pre-

dictability in both the gridpoint and object-based senses.

a. Object-based predictability (SAL)

The following heat maps show standard deviation of

each SAL component generated from the simulated

composite reflectivity fields. This quantity represents the

uncertainty in the nature of object-based differences

(see section 2). Again, there is little difference in SAL-

component character for both Morrison and NSSL two-

moment matrices. Both are presented in Fig. 12 for

comparison, but as the differences are negligible, the

following discussion arbitrarily addresses the Morrison

microphysics scheme.

The structure (purple; Figs. 12a,d) and amplitude

(green; Figs. 12b,e) components trace out U-shaped

maxima, resembling the perimeter of the U-shaped lobe

in previous heat-map figures. Away from this U-shaped

maximum and the low-shear, low-buoyancy maximum

in the bottom left, there is little variation in object

structure S and domain-integrated reflectivity A. These

results suggest that thunderstorm structure and strength,

in an object-based sense, are less predictable along the

U-shaped perimeter. In contrast, the standard deviation

of location component L yields little systematic pat-

tern, though highest variation occurs in the high-shear,

mid- to high-buoyancy regime. The lack of U-shaped

pattern in L, in contrast to S and A components, is re-

lated to the asystematic errors in storm speed (Fig. 9),

and suggests that the predictability ‘‘field’’ of, say, storm

speed is very different from that associated with other

(wind, rainfall, etc.) diagnostics.

As seen in Fig. 11, the U-shaped perimeter appears

to discriminate between weakening and strengthening

cellular convection. As inWK82, a wide variety of storm

strengths can be seen across phase space. To demon-

strate whether this U-shape acts as a tipping point, two

contrasting thunderstorm life cycles are shown in Fig. 13,

taken from two runs adjacent in phase space, and whose

only difference in profile is 0.2 gkg21 (;125 Jkg21 CAPE

equivalent). The two runs lie on the perimeter of the

U-shaped maximum, marked by a the two left-side pixels

within the red box in Fig. 12. Differences between the

supercells’ appearance in simulated composite reflectivity

become apparent between 80- and 100-min simulation

time (Fig. 13), and by 120min, continued strengthening is

particularly evident in the simulation with slightly higher

buoyancy (Fig. 13b).

Similarly, Fig. 14 shows maximum vertical motion at

model level 13 (around 500 hPa or 5.5 km AGL), for the

same two simulations and two additional adjacent sim-

ulations that straddle the U-shaped maximum in Fig. 12

(again, at the location of the red box). The time series

show the initial explosive growth of the storm cell

around 20min, a gradual decrease in intensity between

40 and 60min, and then a bifurcation of solutions: the

two simulations with slightly larger buoyancy generate

pulsating and strengthening updrafts with a period of

around 20min, whereas the slightly lower buoyancy re-

sults in a dissipating of the updrafts with somewhat

longer (30min) period of pulsation.

Keeping wind shear constant, and increasing buoy-

ancy (i.e., moving in the positive y direction), the

wavelength and amplitude of the oscillations decrease

after 60min (not shown). Keeping buoyancy constant

and increasing or decreasing shear dampens the oscil-

lation and chokes the updraft, moving into the basin of

dissipation within phase space. Hence, the U-shaped

maxima in S and A components of SAL (Fig. 12) de-

lineate the two basins of attraction in buoyancy–shear

space. Away from this perimeter, storm attributes di-

verge quickly, and very different 2-h forecasts of similar

atmospheric states ensue: this is the fingerprint of

chaotic growth.

b. Gridpoint predictability (DKE)

In contrast to SAL, DKE measures gridpoint-scale

predictability destruction, with no tolerance of small

storm-location differences. The unit–time derivative of
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uncertainty (dDKE) highlights regions in which

predictability is being destroyed the fastest. Values

of dDKE from the Morrison scheme are presented in

Fig. 15. In the first 30min (Fig. 15a), there is rapid DKE

growth in the high-buoyancy, low-shear regime. This

appears as a rippling pattern (when animated; not

shown) that evokes the pattern observed in the storm

strength diagnostic (Fig. 11). By 60min (Fig. 15b), the

highest dDKE is occurring in the high-buoyancy, high-

shear regime, associated with the long-lasting supercells

occurring here. As seen in the animation (not shown),

waves of ‘‘predictability destruction’’ emanate from

the area of maximum dDKE, most clearly at 90min

(Fig. 15c). These waves may represent the phase

difference between adjacent cells in supercell growth

and mesocyclonic cycling with different cycling periods

(Burgess et al. 1982; Adlerman et al. 1999). Signals of

this pulsation can be seen as sinusoidal waves in 500-hPa

vertical motion (Fig. 14). However, the 20–30-min pe-

riods observed herein are somewhat shorter than those

simulated in Adlerman and Droegemeier (2002, their

Fig. 8). From their conclusions on grid spacing, it is also

surprising that a 3-km grid could resolve such cycling,

though recent work supports such a claim (Britt

et al. 2018).

The simulations that support strong supercells in

the extreme regimes of shear and buoyancy dominate

dDKEmagnitude; as a result, the DKE (not shown) and

FIG. 12. Heat maps showing uncertainty in SAL components at 2 h of simulation time for the (a)–(c) NSSL two-moment and

(d)–(f) Morrison microphysics schemes. Panels show the standard deviation of (a),(d) structure, (b),(e) amplitude, and (c),(f) location

components (unitless; the values are functions of domain size and not meaningful here, hence neglected). Red boxes indicate the four cells

that are shown in the time series of maximum 500-hPa vertical motion in Fig. 14.
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dDKE (Fig. 15) fields look similar beyond around

90min (not shown). Given dDKE is a proxy for pre-

dictability loss, we find that the strongest storms are

associated with the fastest traditional (gridpoint) pre-

dictability destruction. In some ways, this is expected: if

the bifurcation were between no storms at all and su-

percells, then an ensemble forecast ran in an environ-

ment devoid of convection would be very predictable

(low ensemble spread) compared to those with strong

thunderstorms (high ensemble spread). However, it is

generally a counterintuitive result, given that supercells

are a more persistent phenomenon than, for example,

single cells, and long suspected to contain mechanisms

that suppress (object-based) predictability destruction

(Lilly 1986). As the storm cycles and strengthens,

gridpoint predictability is more efficiently destroyed

through chaotic error growth. However, the object-

based predictability may be extended in the manner

discussed by Lilly (1986): a strong rotating supercell

insulates the storm from simply detraining and dissi-

pating. In other words: the thunderstorm’s mode and

characteristics are more predictable than its gridpoint

evaluation (with zero tolerance.) While Lilly’s ideas

relating to helicity and suppression of chaotic error

growth was later shown to be overly optimistic (Lilly

1990), his suspicion of extended supercell predictability

was confirmed by Droegemeier and Levit (1993),

and the mechanism that yields a longer object-based

predictability estimate may be related to nonlinear

feedback loops (Shen et al. 2018), or continuous propa-

gation on the storm’s flank as a consequence of midlevel

mesocyclogenesis and a strengthening low-level updraft

[see discussion inWeisman andRotunno (2000, p. 1454)].

The phase error that may be associated with the waves

in dDKE would result in unfair punishment from not

only traditional point-to-point verification metrics, but

also neighborhood schemes that include windows of

location but not time [a review and critique of neigh-

borhood schemes can be found in Schwartz and Sobash

(2017)]. Scores such as the extended fractions skill score,

published independently by Schwartz et al. (2010) and

Duc et al. (2013), apply the windowing over a number of

adjacent time steps (as well as considering the ensemble

member dimension), and are recommended. It follows

that one could subset a climatology such that it were

confined to that region of phase space, and use this to

more appropriately estimate the upper bound of pre-

dictability. In the case of quasi-operational and experi-

mental forecast systems, however (e.g., Wheatley et al.

2015), it begs the question of defining a model clima-

tology with an insufficient sample of archived cases.

5. Conclusions

This study has presented theoretical predictability for

idealized cellular convection across a high-granularity

FIG. 13. Life cycle of two simulated thunderstorms shown every 20min in simulated composite reflectivity for the (a) Us 5 34m s21,

qy05 10.8 g kg21 and (b)Us5 34m s21, qy05 11.0 g kg21 simulations usingMorrisonmicrophysics (whose location in phase space is shown

by the red box in Fig. 12). The 0- and 20-min panels are omitted because of simulated reflectivity less than 0 dBZ. Scales for both panels are

identical; thunderstorm location is centered within each frame.
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phase space of vertical wind shear and buoyancy. After

an hour of simulation time, storms can be split into two

groups, separated by a U-shaped bifurcation in phase

space (Fig. 16). This bifurcation suggests two basins of

attraction: one basin at higher buoyancy values, associ-

ated with storms that continue strengthening, and an-

other associated with dissipating convection unsupported

by the environment, at lower buoyancy values. While it is

expected that more CAPE and shear available to a storm

will usually increase its strength, this increase does not

occur gradually, but abruptly around the tipping point.

This suggests ensemble forecasts of isolated thunder-

storms in the low- to midbuoyancy regime—for all

shear values—may be associated with large uncertainty

(i.e., spread) as an inherent character of the regime

predictability. Two areas of phase space were frequently

sensitive to small IC changes: 1) the low-buoyancy, high-

shear regime and 2) low-shear regime at all buoyancies.

FIG. 15. As in Fig. 5, but for dDKE (the time derivative of DKE) for theMorrisonmicrophysics scheme at (a) 30, (b) 60, and (c) 90min

of simulation time. Large dDKE values represent higher rates of gridpoint predictability destruction. Magnitudes of dDKE are not

meaningful here, and neglected for clarity.

FIG. 14. Time series of maximum vertical motion at model level 13 (;500 hPa or ;5 km

AGL) for theMorrisonmicrophysics scheme. These four simulations, whose location ismarked

with a red box in Fig. 12, show a bifurcation between strengthening and dissipating supercells

occurring around an hour after initialization. The black vertical line indicates an hour of simu-

lation time. The dashed lines represent storms embedded in atmospheres containing;100 J kg21

less CAPE than those denoted by solid lines (which tend to dissipate after 1 h). Also, blue lines

indicate storms embedded in flow with a 2m s21 weaker 0–6-km wind difference.
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Both were identified as regimes with less skillful forecasts

made by the U.S. Storms Prediction Center (Herman

et al. 2018).

To further assess theoretical predictability, a distinc-

tion between two senses of predictability destruction

was made: (i) one that is measured by DKE growth, and

maximized in the largest storms at extreme buoyancy

and shear levels; and (ii) another measured by object-

based approaches, maximized near tipping points at

the discriminator in phase space between strengthen-

ing and dissipating storms. The former sense is asso-

ciated with traditional gridpoint-to-gridpoint forecast

error (gridpoint predictability), whereas the latter is

associated with error between cellular features, with

tolerance for small phase errors (object-based pre-

dictability). The latter error is more intuitive when

discussing convective-scale forecasts, and tallies with

tolerances considered by human forecasters (i.e., when

storm mode is more important than a precise location).

As such, practical predictability estimates at the con-

vective scale should mimic the forecaster’s mental fil-

tering processes, lest they profoundly underestimate

the utility remnant even after gridpoint error saturation

has been reached.

Other findings include the following:

d There is very little difference between the two double-

moment microphysics schemes, which suggests that (i)

results are likely applicable to other model configura-

tions, and given that microphysics error is a primary

source of model error, (ii) predictability is primarily a

function of IC error at thunderstorm time scales.
d A rippling pattern in phase space, seen in gridpoint-

predictability destruction, may be interpreted as phase

offsets of updraft oscillations whose periods change

with shear and buoyancy.
d As revealed by an object-based decomposition, the

structure and amplitude (or strength) of the thunder-

storm is profoundly sensitive to shear and buoyancy in

regimes of phase space near the U-shaped perimeter;

conversely, there is little pattern to storm-location or

storm-speed uncertainty in phase space, suggesting

that a strong tipping point may not exist for temporal

and spatial phase errors in storm forecasts.
d The maximum rainfall accumulation occurs at low

shear and high to extremeCAPE values, whereas total

storm rainfall is highest in extreme buoyancy and

shear regimes.
d Low-level updraft helicity, a proxy for tornadogenesis,

is maximized at the highest Us and qy0.

In summary, these results should continue tomotivate

the use of ensemble forecasting systems at the convec-

tive scale. It is paramount that these ensemble systems

are reliable in order to fully explore the phase space

of extreme and rare events; as such, system designers

should consider methods that further account for un-

certainty, such as stochastic perturbations (Berner et al.

2017), probabilistic postprocessing (e.g., Bröcker and

Smith 2008), and so on.

There are inherent shortcomings of this experiment,

not least that idealized studies are not immediately ap-

plicable to the observed world. Results above must be

interpreted within the scope of the experimental con-

figuration: the prescription of a straight hodograph, the

limitation of 3-km horizontal grid spacing, and a fixed

parameterization suite (bar microphysics diversity). The

imposition of a warm bubble also precludes any state-

ment on convective initiation, cell mergers, and so on;

more strongly forced phenomena, such as quasi-linear

convective systems, may be partly sheltered from the IC

sensitivity presented herein. Conversely, horizontally

homogeneous lateral-boundary conditions do not in-

troduce any strong forcing (upper-level troughs) events

that may improve predictability in real-world dynamics

(Anthes et al. 1985). Furthermore, model error is

FIG. 16. Schematic of general results detailed herein. The green

curve denotes the U-shaped maximum (e.g., Fig. 12a) that marks

the boundary between the strengthening and dissipating solutions

(black text). The region of phase space that follows this green curve

(and the swath of green for all low-shear values) is associated with

lower object-based predictability. In contrast, the orange shading

denotes the region of phase space with the maximum dDKE, or

traditional predictability destruction, which decreases as one

moves away from the top-right corner.
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neglected here other than microphysics diversity. These

caveats aside, the signal appears genuine: results herein

corroborate observational climatologies, forecast-center

verification studies, and the coarser matrices of phase

space mapped by WK82.

Future work may repeat the above procedure for a

range of sounding types, such as in Kirkpatrick et al.

(2007, 2011), or investigate a link between the idealized

literature with operational datasets from severe weather

forecasting centers.
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